

Figure 4. Standardized mortality rate for lung cancer by total number of cigarettes ever smoked in daily and non-daily consumers of greenyellow vegetables (Prospective study 1966-75).

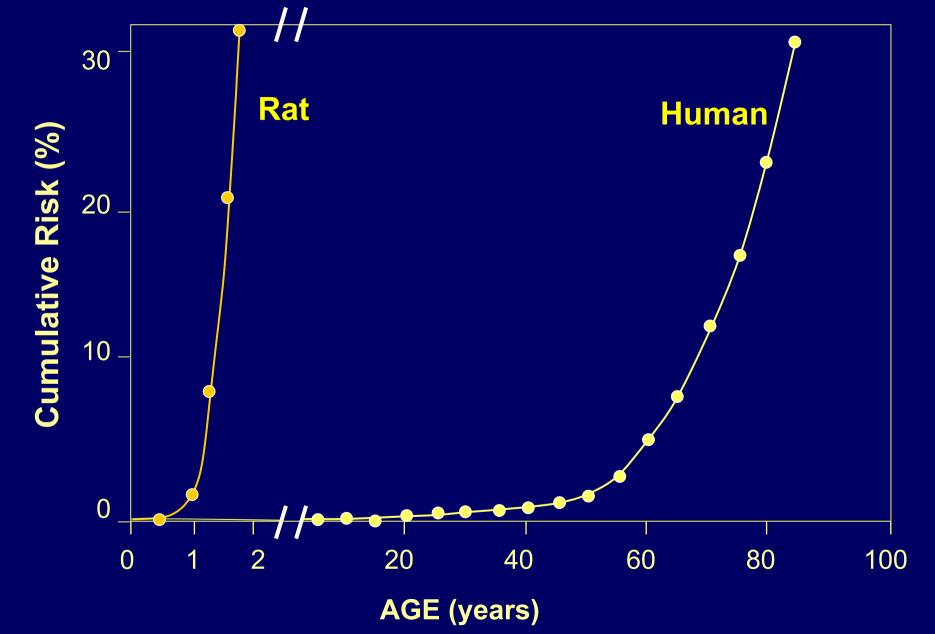
Fruits and Vegetables Protect Against Cancer

(Block, Patterson and Subar, Nutr. Canc., 18: 1-29, 1992)

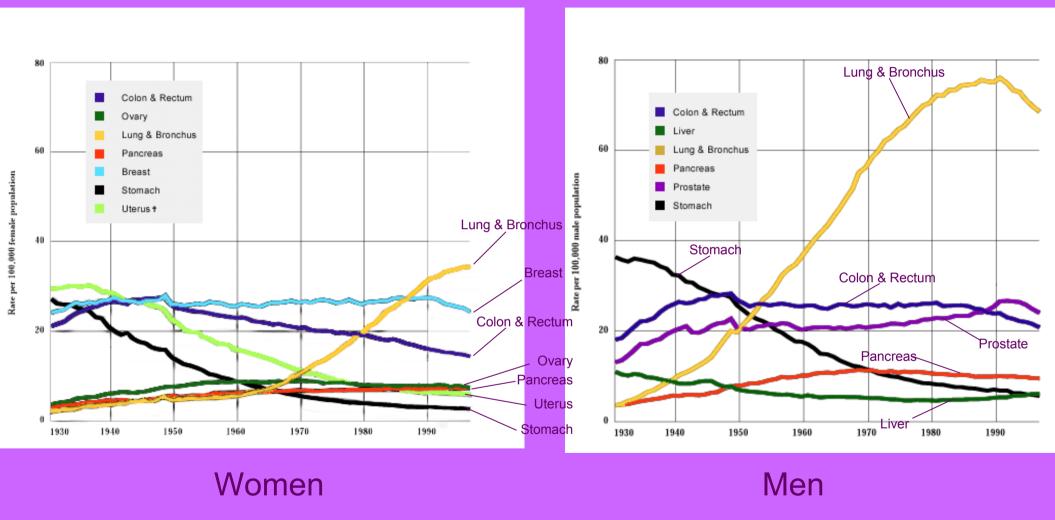
Cancer Site	Fraction of Studies Showing a Protective Effect (p=0.05)	Relative Risk (Median)
Epithelial		
Lung	24/25	2.2
Oral	9/9	2.0
Larynx	4/4	2.3
Esophagus	15/16	2.0
Stomach	17/19	2.5
Pancreas	9/11	2.8
Cervix	7/8	2.0
Bladder	3/5	2.1
Colorectal	20/35	1.9
Miscellaneous	6/8	-
Hormone-Dependent		
Breast	8/14	1.3
Ovary/Endometrium	3/4	1.8
Prostate	4/14	1.3

Oxidants from Phagocytic Cells $NO \cdot 1 \rightarrow ONOO^{-1} \rightarrow OH^{++} OH^{++}$

 H_2O_2

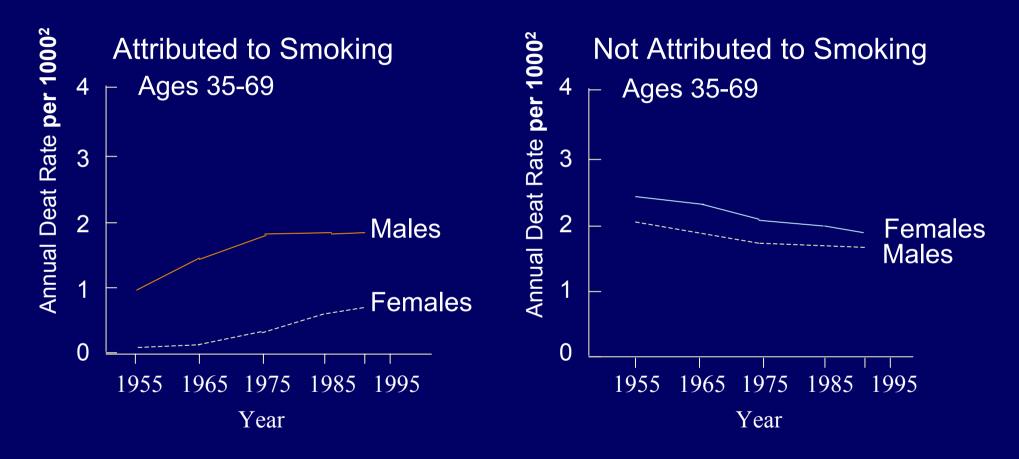

 $O_2^{-\bullet}$

OCI-


Bna_0011_060.ppt

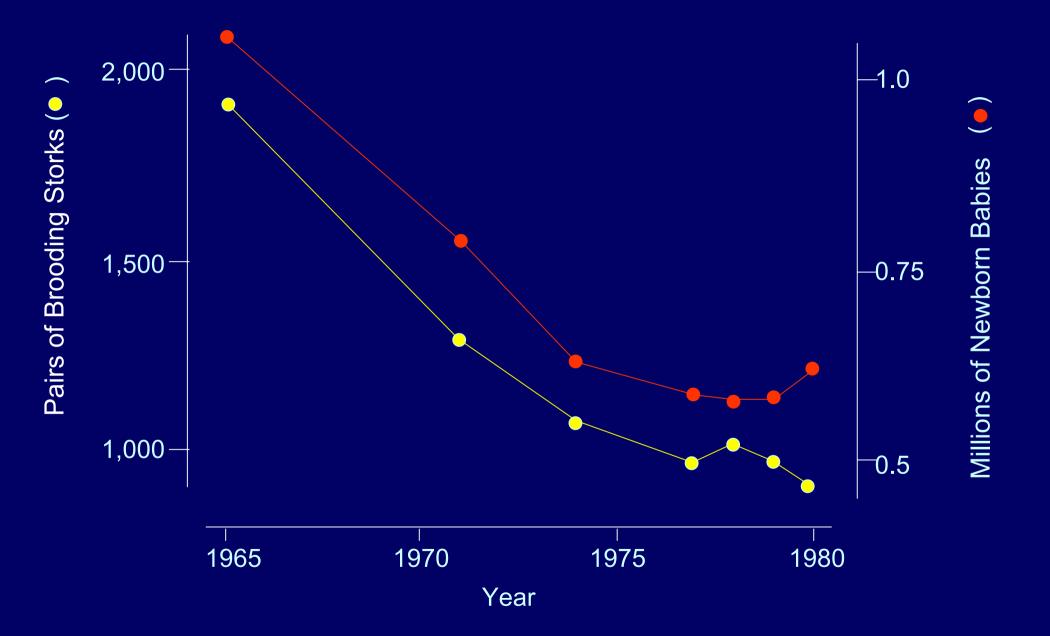
 $\bullet NO_2$

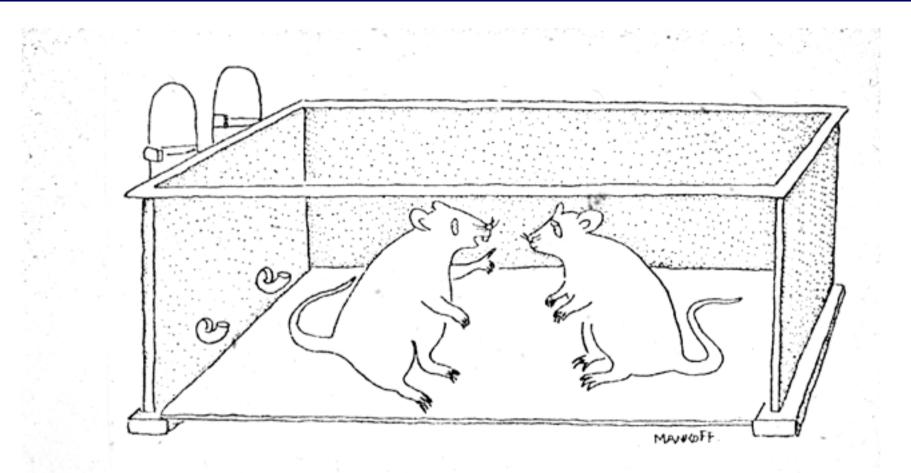
Cumulative Net Risk of Death from Cancer for Rat and Human



Age-Adjusted Cancer Death Rates by Site, U.S. 1930-1996

Source: US Mortality Public Use Data Tapes 1960-1996, US Mortality Volumes 1930-1959, National Center for Health Statistics, Centers for Disease Control and Prevention, 1999. American Cancer Society, *Surveillance Research*


Total Cancer Mortality in the United States, 1955-1990



* Mean of seven age-specific rates, ages 35-69; annual death rate/1000.
 Source: R. Peto, A.D. Lopez, J. Boreham, M.Thun, and C. Heath, Jr., *Mortality from Smoking in Developed Countries*. 1950-2000 (Oxford: Oxford University Press, 1994)

"For the first time in the history of the world, every human being is now subjected to contact with dangerous chemicals, from the moment of conception until death."

> Rachel Carson Silent Spring, 1962

"MY MAIN FEAR USED TO BE CATS - NOW IT'S CARCINOGENS."

Proportion of Chemicals Evaluated as Carcinogenic

TESTED IN BOTH RATS AND MICE ^a Naturally occurring chemicals Synthetic chemicals	330/559 73/127 257/432	59% 57% 59%
TESTED IN RATS AND/OR MICE ^a		
Carcinogenic Potency Database	668/1275	52%
Natural pesticides	35/64	55%
Mold toxins	14/23	61%
Chemicals in roasted coffee	19/28	68%
INNES NEGATIVES CHEMICALS RETESTED ^a	16/34	47%
PDR DRUGS WITH REPORTED CANCER TESTS ^b	117/241	49%
FDA DATABASE OF DRUG SUBMISSION ^c	125/282	44%

^a From the Carcinogenic Potency Database (1997)

^b Davies and Munro (1995)

^c Contrera et al (1997), 140 drugs are in both the FDA and PDR databases

Dose-response data from animal cancer tests are usually limited to high doses and few points, and do not provide sufficient information to estimate risk at exposure levels 740,000 times below the MTD.

- Data are available only for the MTD and 1/2 the MTD, both high doses.
- Data are available for only 3 points: 2 doses and a control.
- When tested for consistency of the dose-response with 3 different curve shapes (linear, square root, and quadratic) 2/3 of the statistically significant curves are consistent with all 3 models and 83% are consistent with at least 2 models.

49 NATURAL PESTICIDES (AND METABOLITES) IN CABBAGE

GLUCOSINOLATES

- 2-propenyl glucosinolate (sinigrin) 3-methyl-thio-propyl glucosinolate 3-methyl-sulfinyl-propyl glucosinolate 3-butenyl glucosinolate 2-hydroxy-3bnutenyl glucosinolate 4-methyl-thio-butyl-glucosinolate 4-methyl-sulfinyl-butyl-glucosinolate 4-methylsulfonyl-butyl-glucosinolate
- **Benzyl glucosinolate** Propyl glucosinolate
- Butyl glucosinolate

NDOLE GLUCOSINOLATES AND RELATED INDOLES

2-indolyl-methyl glucosinolate (glucobrassicin) 1-methoxy-3-indolylmethyl (neoglucobrassicin)

- 3-indole-3-carbinol (IC)
- 3-indole-3-acetonitrile
- 3 3'-diindolylmethane

ISOTHIOCYANATES AND **GOITRIN**

allyl isothiocyanate 3-methyl-thio-propyl isothiocyanate 3-methyl-sulfinyl-propyl isothiocyanate 3-butenyl isothiocyanate 5-vinyloxazolidine-2-thione (qoitrin) 4-methylthiobutyl isothiocyanate 4-methylsulfonylbutyl isothiocyanate 4-pentenyl isothiocyanate **Benzyl** isothiocyanate Pheylethyl isothiocyanate **ALCOHOLS**

Menthol Neomenthol Isomenthol

KETONES

Carvone

CYANIDES 1-cyano-2,3-epithiopropane 1-cyane-3,4-epithiobutane 1-cyano-3,4-epithiopentane Threo-1-cyano-2-hydroxy-3,4 epithiobutane Erythro-1-cyano-2-hydroxy-3,4 epithiobutane 2-phenylpropionitrile Allyl cyanide* 1-cyano-2-hydroxy-3-butene 1-cyano-3methylsulfinylpropane 1-cyano4mehtylsulfinylbutane PHENOLS AND TANNINS 2-methoxyphenol 3-caffoylquinic acid (chlorgenic acid 4-caffoylquinic acid 5-caffoylquinic acid (nechlorogenic acid) 4-p-coumaroylquinic acid 5-p-coumaroylquinic acid 5-feruloylquinic acid

Plant	Rodent	Concentration
Food	Carcinogen	(ppm)
Parsley	5- and 8-methoxypsoralen	14
Parsnip, cooked	"	32
Celery	دد	.8
Celery, new cultivar	دد	6.2
Celery, stressed	دد	25
Mushroom, commercial	<i>p</i> -hydrazinobenzoate	11
Mushroom, commercial	glutamyl-p-hydrazinobenzoate	42
Cabbage	sinigrin (allylisothiocyanate)	35-590
Radish		11
Cauliflower	دد	12-66
Brussels sprouts	دد	110-1,560
Mustard (brown)	دد	16,000-72,000
Horseradish	دد	4,500
Orange juice	limonene	<u>31</u>
Mango	دد	40
Pepper, black	"	8,000
Basil	estragole	3,800
Fennel	"	3,000
Nutmeg	safrole	3,000
Mace	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10,000
Pepper, black	"	100
Sesame seeds (heated oil)	sesamol	75
Basil	benzyl acetate	82
Jasmine tea	"	230
Honey	دد	15

PESTICIDE RESIDUES

- 1) US Consumption FDA Estimate = 0.09 mg/day
 - 0.04 mg known non-carcinogens
 - 0.05 mg potential carcinogens

~105 chemicals in ppb range

NATURAL PESTICIDE RESIDUES

- 1) US Consumption
 Ames Estimate = ~1500 mg/day
 ∴99.99% of pesticides are natural
- ~5000 chemicals at 1000 ppb or more
- 2) 52 assayed in animal cancer tests: 27 are **carcinogenic**
- 3) 72 tested for clastogenicity:35 (48%) positive in all tests
- Of synthetic chemicals tested (951) 53% were **clastogenic**

Comparison of average exposures to natural and synthetic pesticides.

HERP (%) Average daily human exposure Coffee (from 13.3 g) (3 cups) Lettuce (14.9 g) (1/67 th head)Safrole in spices Orange juice (138 ml) (4/5th glass) pepper, black (446 mg) Mushroom (2.55 g)(1/6th)Apple (32.0g) (1/7th) Celery, (21.6g) (2/5th stalk) Coffee (from 13.3 g) (3 cups) potato (54.9 g; peeled) (1/4th) nutmeg (27.4 mg) carrot (12.1 g) [1/10th] DDT: daily dietary average apple juice (6 oz.;177 ml) Plum (1.86 g)(1.25th) Pear (3.29 g) (9/100th) 0.0009Brown mustard (68.4 mg) 8000.0 (DDE: daily dietary average) Celery (21.6 g) [2/5th stalk] 0.0006 0.0006 Mushroom (2.55g) [1/6th] 0.0004 **EDB:** Daily dietary average

0.1

0.04

0.03

0.03

0.03

0.02

0.02

0.01

0.006

0.004

0.003

0.003

0.002

0.002 0.001

0.001

Human dose of rodent carcinogen

Caffeic acid, 23.9 mg Caffeic acid, 7.90 mg Safrole, 1.2 mg d-Limonene, 4.28 mg d-Limonene, 3.57 mg Mix of hydrazines, etc. Caffeic acid, 3.40 mg Caffeic acid, 2.33 mg catechol, 1.33 mg caffeic acid, 867 µg d-Limonene, 466 µg Caffeic acid, 624 µg [DDT, 13.8 µg (before 1972 ban)] [UDMH, 5.89 µg (from Alar, 1988)] Caffeic acid, 257 µg Caffeic acid, 240 µg Allyl isothiocyanate, 62.9 µg [DDE, 6.91 µg (before 1972 ban)] 8-Methoxypsoralen, 13.2 μg Glutamyl-p-hydrazinobenzoate, 107 µg [EDB, 420 ng (before 1984 ban)]

Comparison of average exposures to natural and synthetic pesticides (continued).

HERP (%) Average daily human exposure

0.0003 0.0002 0.0002 0.0001 0.0000980000.0 0.00007 0.00005 0.00002 0.000010.000010.0000004 0.0000001 < 0.0000001 8000000000 0.000000006

Carbaryl: daily dietary avg. Toxaphene: daily dietary avg. Apple, 1 whole (230 g) Mango (522 mg) (1/500th) Mushroom (2.55 mg) (1/6th) DDE/DDT: daily dietary avg. Parsnip (54 mg) (1/3300th) Parsley, fresh (324 mg) Dicofol: daily dietary avg. Cocoa (3.34g) (4/5th serving) Lindane: daily dietary avg. PCNB: daily dietary avg. Chlorobenzilate: daily dietary avg. Chlorothalonil: daily dietary avg. Folpet: daily dietary avg. Captan: daily dietary avg.

Human dose of rodent carcinogen

Carbaryl, 2.6µg (1990) Toxaphene, 595 ng (1990) [UDMH, 598 ng (from Alar, 1988)] d-Limonene, 20.9 µg p-Hydrazinobenzoate, 28 µg DDE, 659 ng (1990) 8-Methoxypsoralen, 1.57 μg 8-Methoxypsoralen, 1.17 μg Dicofol, 544 ng (1990) α -Methylbenzyl alcohol, 4.3 µg Lindane, 32 ng (1990) PCNB (Quintozene), 19.2 ng (1990) Chlorobenzilate, 6.4 ng (1989) Chlorothalonil, <6.4 ng (1990) Folpet, 12.8 ng (1990) Captan 11.5 ng (1990)

Carcinogenicity status of volatile chemicals in tomato

Positive: N=17

Acetaldehyde, benzaldehyde, benzene, benzyl acetate, chloroform, 1,4-dioxane, ethanol, ethylbenzene, formaldehyde, furfuryl alcohol, limonene, naphthalene, pyridine, styrene, toluene, 1,2,4-trimethylbenzene, xylene

Negative: N=8

acrolein, allyl alcohol,benzoic acid, biphenyl, carvone, citronellyl acetate, eugenol, phenol

Yet to test:

365 volatile chemicals

Carcinogenicity Status of Natural Pesticides Tested in Rodents

Carcinogens: N=37	Acetaldehyde methylformylhydrazone, allyl isothiocyanate, arecoline.HCL, benzaldehyde, benzyl acetate, caffeic acid, capsaicin, catechol, clivorine, coumarin, crotonaldehyde, 3,4-dihydrocoumarin, estragole, ethyl acrylate, N2- γ -glutamyl-p- hydrazinobenzoic acid.HCL, hydroquinone, 1-hydroxyanthraquinone, lasiocarpine, d- limonene, 3-methoxycatechol, 8-methoxypsoralen, N-methyl-N-formylhydrazone, 4- methylcatechol, methylhydrazine, monocrotaline, pentanal methylformylhydrazone, petasitenine, quercetin, reserpine, safrole, safrole, senkirkine, sesamol, symphytine
Noncarcinogens: N=34	Atropine, benzyl alcohol, benzylixothiocyanate, benzyl thiocyanate, biphenyl, d- carvone, codeine, deserpidne, disodium glycirrhysinate, ephedrine sulphate, epigallocatechin, eucalyptol, eugenol, gallic acid, geranyl acetate, β -N-[γ -/(+)- glutamyl]-4-hydroxymethylphenylhydrazine, glycyrrhetirric acid, p-hydrazino-benzoic acid, isosafrole, kaempferol, <i>dl</i> -menthol, nicotine, norharman, phenethyl, isothiocyanate, pilocarpine, piperidine, protocatechaic acid, rotenone, rutin sulfate, sodium benzotae, tannic acid, 1-trans- δ^9 -tetrahydrocannabinol, turmeric oleoresin, xinblastine

These rodent carcinogens occur in: absinthe, allspice, anise, apple, apricot, banana, basil, beer, Broccoli, Brussels sprouts, cabbage, cantaloupe, caraway, cardamom, carrot, cauliflower, celery, cherries. Chili pepper, chocolate, cinnamon, cloves, coffee, collard greens, comfrey herb tea, corn, coriander, currants, dill., eggplant, endive, fennel, garlic, grapefruit., grapes, guava, honey, honeydew, melon, horseradish, kale, lemon, lentils, lettuce, licorice, lime, mace, mango, marjoram, mint, mushrooms, mustard, nutmeg,m onion, orange, paprika, parsley, parsnip, peach, pear, peas, black pepper, pineapple, plum, potato, radish, raspberries, rhubarb, rosemary, rutabaga, sage, savory, sesame seeds, soybean, star anise, tarragon, tea thyme, tomato, turmeric, and turnip.

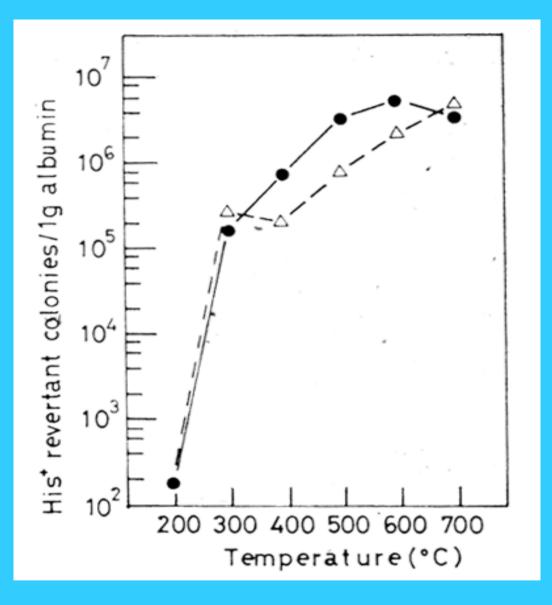
Ranking possible carcinogenic hazards (HERP) from natural and synthetic chemicals: Part 1

HERP (%)	Daily human exposure	Human dose of rodent carcinogen
140	EDB: workers; daily intake (high exposure)	Ethylene dibromide, 150 mg
17	Clofibrate (average daily dose)	Clofibrate, 2g
16	Phenobarbital, 1 sleeping pill	Phenobarbital, 60 mg
[14]	Isoniazid pill (prophylactic dose)	Isoniazid, 300 mg
6.2	Comfrey-pepsin tablets, 9 daily	Comfrey root, 2.7g
[5.6]	Metronidazole (therapeutic dose)	Metronidazole, 2g
4.7	Wine (250 ml)	Ethyl alcohol, 30 ml *
4.0b	Formaldehyde: Workers' average daily intake	Formaldehyde, 6.1 mg
2.8	Beer (12 ounces; 54 ml)	Ethyl alcohol, 18 ml
1.4b	Mobile home air (14 hour/day)	Formaldehyde, 2.2 mg
1.3	Comfrey-pepsin tablets, 9 daily	Symphytine, 1.8 mg
0.4b	Conventional home air (14 hours/day)	Formaldehyde, 598 µg
[0.3]	Phenacetin pill (average dose)	Phenacetin, 300 mg
0.3	Lettuce, 1/8 head (125 g)	Caffeic acid, 66.3 mg

* Natural chemicals in the diet are in bold

TCDD (Dioxin) Compared With Alcohol TERATOGENICITY

in mice 1 μg TCDD = 15g alcohol (1 beer) 6 fg/kg/day TCDD (EPA


- reference" dose)
- = 1/3,000,000 beer/day
- = 1 beer/8000 years

CARCINOGENICTY

in rats: 1 μg TCDD+ 300 g alcohol 6 fg/kg/day TCDD (EPA reference" dose) = 1/150,000 beer/day = 1 beer/345 years U.S. average is one beer (drink)/day

TCDD (Dioxin) Compared to Broccoli CARCINOGENICITY

- Indole carbinol in broccoli, cabbage, and Brussels sprouts. Indole carbinol dimer (ICZ) is formed in the stomach and has the same properties as TCDD (Bjeldanes; PNAS)
- ICZ binds 1/27 as well as TCDD to Ah receptor.
- 1 portion of broccoli = more of a hazard than EPA "reference" dose of TCDD (Bjeldanes).

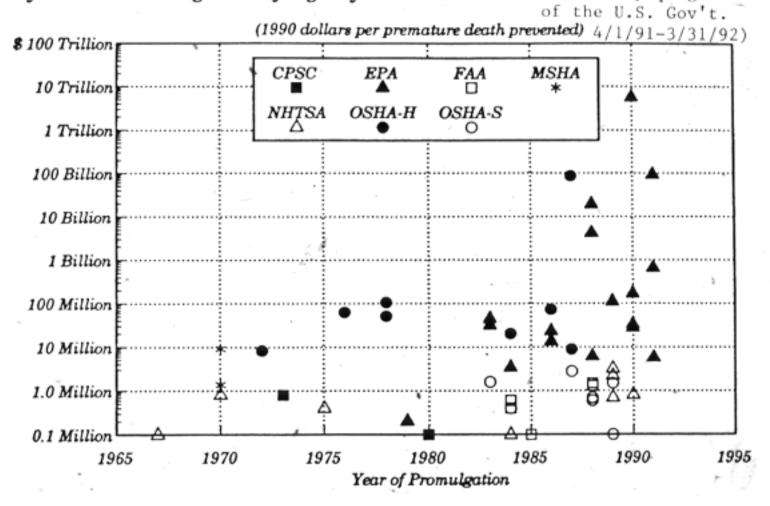
Mutagenic Activity (Number of His⁺ Revertant Colonies) of Albumin Pyrolyzed at Different temperature Under N_2 or Air Atmosphere

Yoshida, Matsumoto, & Nishigata, Agric. Biol. Chem. 44:253 (1980)

CARCINOGENICITY STATUS OF NATURAL CHEMICALS IN COFFEE

Carcinogens	Acetaldehyde, Benzaldehyde, Benzene, Benzofuran, Benzo(a)Pyrene, Caffeic Acid, Catechol, 1,2,5,6-Dibenzanthracene, Ethanol, Ethylbenzene, Formaldehyde, Furan, Furfural, Hydrogen Peroxide, Hydroquinone, Limonene, Styrene, and Toluene
Noncarcinogens	Biphenyl, Eugenol, Phenol, Piperidine, and Acrolein
Yet to be Tested	\sim 1,000 chemicals

Vehicular Pollution


Means of Transport	Pollutant	Emissions (grams per mile)
Horses	Waste, solid Waste, liquid	640 300
Automobiles	Hydrocarbons CO NO _x	0.25 4.7 0.4

J.H. Ausubel in: "Technology and Environment", National Academy of Engineering, 1989.

Overview of aims and achievements of toxicology.

	Illusion	Reality
Aim	Prevent human diseases from chemicals	 Provide living for: Contract laboratories Civil Servants Lawyers Statisticians Consultants Conference organizers
Achievements	Public reassured that chemicals are properly tested for carcinogenic activity	Public worried to 'death' (or indifference) by: Politicians Sensational press statements

Figure 2. Cost-Effectiveness of Selected Federal Regulations (From: O.M.B.: by Year of Promulgation by Agency Regulatory Program

- N.

Relax, I've come for your toaster